1

Рассмотрена проблема разработки импульсных детонационных двигателей. Перечислены основные научные центры, ведущие исследования по двигателям нового поколения. Рассмотрены основные направления и тенденции развития конструкции детонационных двигателей. Представлены основные типы таких двигателей: импульсный, импульсный многотрубный, импульсный с высокочастотным резонатором. Показано отличие в способе создания тяги по сравнению с классическим реактивным двигателем, оснащенным соплом Лаваля. Описано понятие тяговой стенки и тягового модуля. Показано, что импульсные детонационные двигатели совершенствуются в направлении повышения частоты следования импульсов, и это направление имеет свое право на жизнь в области легких и дешевых беспилотных летательных аппаратов, а также при разработке различных эжекторных усилителей тяги. Показаны основные сложности принципиального характера в моделировании детонационного турбулентного течения с использованием вычислительных пакетов, основанных на применении дифференциальных моделей турбулентности и осреднения уравнений Навье–Стокса по времени.

детонационный двигатель

импульсный детонационный двигатель

1. Булат П.В., Засухин О.Н., Продан Н.В. История экспериментальных исследований донного давления // Фундаментальные исследования. – 2011. – № 12 (3). – С. 670–674.

2. Булат П.В., Засухин О.Н., Продан Н.В. Колебания донного давления // Фундаментальные исследования. – 2012. – № 3. – С. 204–207.

3. Булат П.В., Засухин О.Н., Продан Н.В.. Особенности применения моделей турбулентности при расчете течений в сверхзвуковых трактах перспективных воздушно-реактивных двигателей // Двигатель. – 2012. – № 1. – С. 20–23.

4. Булат П.В., Засухин О.Н., Усков В.Н. О классификации режимов течения в канале с внезапным расширением // Теплофизика и Аэромеханика. – 2012. – № 2. – С. 209–222.

5. Булат П.В., Продан Н.В. О низкочастотных расходных колебаниях донного давления // Фундаментальные исследования. – 2013. – № 4 (3). – С. 545–549.

6. Ларионов С.Ю., Нечаев Ю.Н., Мохов А.А. Исследование и анализ «холодных» продувок тягового модуля высокочастотного пульсирующего детонационного двигателя // Вестник МАИ. – Т.14. – № 4 – М.: Изд-во МАИ-Принт, 2007. – С. 36–42.

7. Тарасов А.И., Щипаков В.А. Перспективы использования пульсирующих детонационных технологий в турбореактивных двигателя. ОАО «НПО «Сатурн» НТЦ им. А. Люльки, Москва, Россия. Московский авиационный институт (ГТУ). – Москва, Россия. ISSN 1727-7337. Авиационно-космическая техника и технология, 2011. – № 9 (86).

Проекты по детонационному горению в США включены в программу разработок перспективных двигателей IHPTET. В кооперацию входят практически все исследовательские центры, работающие в области двигателестроения. Только в NASA на эти цели выделяется до 130 млн $ в год. Это доказывает актуальность исследований в данном направлении.

Обзор работ в области детонационных двигателей

Рыночная стратегия ведущих мировых производителей направлена не только на разработку новых реактивных детонационных двигателей, но и на модернизацию существующих путем замены в них традиционной камеры сгорания на детонационную. Кроме того, детонационные двигатели могут стать составным элементом комбинированных установок различных типов, например, использоваться в качестве форсажной камеры ТРДД, в качестве подъемных эжекторных двигателей в СВВП (пример на рис. 1 - проект транспортного СВВП фирмы «Боинг»).

В США разработки детонационных двигателей ведут многие научные центры и университеты: ASI, NPS, NRL, APRI, MURI, Stanford, USAF RL, NASA Glenn, DARPA-GE C&RD, Combustion Dynamics Ltd, Defense Research Establishments, Suffield and Valcartier, Uniyersite de Poitiers, University of Texas at Arlington, Uniyersite de Poitiers, McGill University, Pennsylvania State University, Princeton University.

Ведущие позиции по разработке детонационных двигателей занимает специализированный центр Seattle Aerosciences Center (SAC), выкупленный в 2001 г. компанией Pratt and Whitney у фирмы Adroit Systems. Большая часть работ центра финансируется ВВС и NASA из бюджета межведомственной программы Integrated High Payoff Rocket Propulsion Technology Program (IHPRPTP), направленной на создание новых технологий для реактивных двигателей различных типов.

Рис. 1. Патент US 6,793,174 В2 фирмы «Боинг», 2004 г.

В общей сложности, начиная с 1992 г., специалистами центра SAC осуществлено свыше 500 стендовых испытаний экспериментальных образцов. Работы по пульсирующим детонационным двигателям (PDE) с потреблением атмосферного кислорода Центр SAC ведет по заказу ВМС США. Учитывая сложность программы, специалисты ВМС привлекли к ее реализации практически все организации, занимающиеся детонационными двигателями. Кроме компании Pratt and Whitney, в работах принимают участие Исследовательский центр United Technologies Research Center (UTRC) и фирма Boeing Phantom Works.

В настоящее время в нашей стране над этой актуальной проблемой в теоретическом плане работают следующие университеты и институты Российской академии наук (РАН): Институт химической физики РАН (ИХФ), Институт машиноведения РАН, Институт высоких температур РАН (ИВТАН), Новосибирский институт гидродинамики им. Лаврентьева (ИГиЛ), Институт теоретической и прикладной механики им. Христиановича (ИТМП), Физико-технический институт им. Иоффе, Московский государственный университет (МГУ), Московский государственный авиационный институт (МАИ), Новосибирский государственный университет, Чебоксарский государственный университет, Саратовский государственный университет и др.

Направления работ по импульсным детонационным двигателям

Направление № 1 - Классический импульсный детонационный двигатель (ИДД). Камера сгорания типичного реактивного двигателя состоит из форсунок для смешения топлива с окислителем, устройства поджигания топливной смеси и собственно жаровой трубы, в которой идут окислительно-восстановительные реакции (горение). Жаровая труба заканчивается соплом. Как правило, это сопло Лаваля, имеющее сужающуюся часть, минимальное критическое сечение, в котором скорость продуктов сгорания равна местной скорости звука, расширяющуюся часть, в которой статическое давление продуктов сгорания снижается до давления в окружающей среде, насколько это возможно. Очень грубо можно оценить тягу двигателя как площадь критического сечения сопла, умноженную на разность давления в камере сгорания и окружающей среде. Поэтому тяга тем выше, чем выше давление в камере сгорания.

Тяга импульсного детонационного двигателя определяется другими факторами - передачей импульса детонационной волной тяговой стенке. Сопло в этом случае вообще не нужно. Импульсные детонационные двигатели имеют свою нишу - дешевые и одноразовые летательные аппараты. В этой нише они успешно развиваются в направлении повышения частоты следования импульсов.

Классический облик ИДД - цилиндрическая камера сгорания, которая имеет плоскую или специально спрофилированную стенку, именуемую «тяговой стенкой» (рис. 2). Простота устройства ИДД - неоспоримое его достоинство. Как показывает анализ имеющихся публикаций , несмотря на многообразие предлагаемых схем ИДД, всем им свойственно использование в качестве резонансных устройств детонационных труб значительной длины и применение клапанов, обеспечивающих периодическую подачу рабочего тела.

Следует отметить, что ИДД, созданным на базе традиционных детонационных труб, несмотря на высокую термодинамическую эффективность в единичной пульсации, присущи недостатки, характерные для классических пульсирующих воздушно-реактивных двигателей, а именно:

Низкая частота (до 10 Гц) пульсаций, что и определяет относительно невысокий уровень средней тяговой эффективности;

Высокие тепловые и вибрационные нагрузки.

Рис. 2. Принципиальная схема импульсно-детонационного двигателя (ИДД)

Направление № 2 - Многотрубный ИДД. Основной тенденцией при разработках ИДД является переход к многотрубной схеме (рис. 3). В таких двигателях частота работы отдельной трубы остается низкой, но за счет чередования импульсов в разных трубах разработчики надеются получить приемлемые удельные характеристики. Такая схема представляется вполне работоспособной, если решить проблему вибраций и асимметрии тяги, а также проблему донного давления , в частности, возможных низкочастотных колебаний в донной области между трубами.

Рис. 3. Импульсно-детонационный двигатель (ИДД) традиционной схемы с пакетом детонационных труб в качестве резонаторов

Направление № 3 - ИДД с высокочастотным резонатором. Существует и альтернативное направление - широко разрекламированная в последнее время схема с тяговыми модулями (рис. 4), имеющими специально спрофилированный высокочастотный резонатор. Работы в данном направлении ведутся в НТЦ им. А. Люльки и в МАИ . Схема отличается отсутствием каких-либо механических клапанов и запальных устройств прерывистого действия.

Тяговый модуль ИДД предлагаемой схемы состоит из реактора и резонатора. Реактор служит для подготовки топливно-воздушной смеси к детонационному сгоранию, разлагая молекулы горючей смеси на химически активные составляющие. Принципиальная схема одного цикла работы такого двигателя наглядно представлена на рис. 5.

Взаимодействуя с донной поверхностью резонатора как с препятствием, детонационная волна в процессе соударения передает ей импульс от сил избыточного давления.

ИДД с высокочастотными резонаторами имеют право на успех. В частности, они могут претендовать на модернизацию форсажных камер и доработку простых ТРД, предназначенных опять же для дешевых БПЛА. В качестве примера можно привести попытки МАИ и ЦИАМ модернизировать таким образом ТРД МД-120 за счет замены камеры сгорания реактором активации топливной смеси и установкой за турбиной тяговых модулей с высокочастотными резонаторами. Пока работоспособную конструкцию создать не удалось, т.к. при профилировании резонаторов авторами используется линейная теория волн сжатия, т.е. расчеты ведутся в акустическом приближении. Динамика же детонационных волн и волн сжатия описывается совсем другим математическим аппаратом. Использование стандартных численных пакетов для расчета высокочастотных резонаторов имеет ограничение принципиального характера . Все современные модели турбулентности основаны на осреднении уравнений Навье-Стокса (базовые уравнения газовой динамики) по времени. Кроме того, вводится предположение Буссинеска, что тензор напряжения турбулентного трения пропорционален градиенту скорости. Оба предположения не выполняются в турбулентных потоках с ударными волнами, если характерные частоты сопоставимы с частотой турбулентной пульсации. К сожалению, мы имеем дело именно с таким случаем, поэтому тут необходимо либо построение модели более высокого уровня, либо прямое численное моделирование на основе полных уравнений Навье-Стокса без использования моделей турбулентности (задача, неподъемная на современном этапе).

Рис. 4. Схема ИДД с высокочастотным резонатором

Рис. 5. Схема ИДД с высокочастотным резонатором: СЗС - сверхзвуковая струя; УВ - ударная волна; Ф - фокус резонатора; ДВ - детонационная волна; ВР - волна разрежения; ОУВ - отраженная ударная волна

ИДД совершенствуются в направлении повышения частоты следования импульсов. Это направление имеет свое право на жизнь в области легких и дешевых беспилотных летательных аппаратов, а также при разработке различных эжекторных усилителей тяги.

Рецензенты:

Усков В.Н., д.т.н., профессор кафедры гидроаэромеханики Санкт-Петербургского государственного университета, математико-механический факультет, г. Санкт-Петербург;

Емельянов В.Н., д.т.н., профессор, заведующий кафедрой плазмогазодинамики и теплотехники, БГТУ «ВОЕНМЕХ» им. Д.Ф. Устинова, г. Санкт-Петербург.

Работа поступила в редакцию 14.10.2013.

Библиографическая ссылка

Булат П.В., Продан Н.В. ОБЗОР ПРОЕКТОВ ДЕТОНАЦИОННЫХ ДВИГАТЕЛЕЙ. ИМПУЛЬСНЫЕ ДВИГАТЕЛИ // Фундаментальные исследования. – 2013. – № 10-8. – С. 1667-1671;
URL: http://fundamental-research.ru/ru/article/view?id=32641 (дата обращения: 29.07.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Экология потребления.Наука и техника:В конце августа 2016 года мировые информационные агентства облетела новость: на одном из стендов НПО «Энергомаш» в подмосковных Химках заработал первый в мире полноразмерный жидкостный ракетный двигатель (ЖРД) с использованием детонационного горения топлива.

В конце августа 2016 года мировые информационные агентства облетела новость: на одном из стендов НПО «Энергомаш» в подмосковных Химках заработал первый в мире полноразмерный жидкостный ракетный двигатель (ЖРД) с использованием детонационного горения топлива. К этому событию отечественная наука и техника шла 70 лет.

Идея детонационного двигателя была предложена советским физиком Я. Б. Зельдовичем в статье «Об энергетическом использовании детонационного сгорания», опубликованной в «Журнале технической физики» еще в 1940 году. С тех пор во всем мире шли исследования и эксперименты по практической реализации перспективной технологии. В этой гонке умов вперед вырывались то Германия, то США, то СССР. И вот важный приоритет в мировой истории техники закрепила за собой Россия. В последние годы чем-то подобным нашей стране удается похвастать не часто.

На гребне волны

В чем же состоят преимущества детонационного двигателя? В традиционных ЖРД, как, впрочем, и в обычных поршневых или турбореактивных авиадвигателях, используется энергия, которая выделяется при сжигании топлива. В камере сгорания ЖРД при этом образуется стационарный фронт пламени, горение в котором происходит при неизменном давлении. Этот процесс обычного горения называется дефлаграцией. В результате взаимодействия горючего и окислителя температура газовой смеси резко возрастает и из сопла вырывается огненный столб продуктов сгорания, которые и образуют реактивную тягу.

Детонация - это тоже горение, но происходит оно в 100 раз быстрее, чем при обычном сжигании топлива. Этот процесс идет так быстро, что детонацию часто путают со взрывом, тем более что при этом выделяется столько энергии, что, к примеру, автомобильный мотор при возникновении этого явления в его цилиндрах и в самом деле может разрушиться. Однако детонация - это не взрыв, а вид горения столь стремительного, что продукты реакции даже не успевают расшириться, поэтому этот процесс, в отличие от дефлаграции, идет при постоянном объеме и резко возрастающем давлении.

На практике это выглядит следующим образом: вместо стационарного фронта пламени в топливной смеси внутри камеры сгорания формируется детонационная волна, которая движется со сверхзвуковой скоростью. В этой волне сжатия и происходит детонация смеси горючего и окислителя, а это процесс с термодинамической точки зрения куда более эффективный, чем обычное сжигание топлива. КПД детонационного сгорания на 25–30% больше, то есть при сжигании одинакового количества топлива получается больше тяги, а благодаря компактности зоны горения детонационный двигатель по мощности, снимаемой с единицы объема, теоретически на порядок превосходит обычные ЖРД.

Уже одного этого оказалось достаточно, чтобы привлечь самое пристальное внимание специалистов к этой идее. Ведь тот застой, который сейчас возник в развитии мировой космонавтики, на полвека застрявшей на околоземной орбите, в первую очередь связан с кризисом ракетного двигателестроения. В кризисе, кстати, находится и авиация, не способная перешагнуть порог трех скоростей звука. Этот кризис можно сравнить с ситуацией в поршневой авиации в конце 1930-х годов. Винт и двигатель внутреннего сгорания исчерпали свой потенциал, и только появление реактивных двигателей позволило выйти на качественно новый уровень высот, скоростей и дальности полетов.

Конструкции классических ЖРД за последние десятилетия были вылизаны до совершенства и практически подошли к пределу своих возможностей. Увеличить их удельные характеристики в будущем возможно лишь в очень незначительных пределах - на считаные проценты. Поэтому мировая космонавтика вынуждена идти по экстенсивному пути развития: для пилотируемых полетов на Луну приходится строить гигантские ракеты-носители, а это очень сложно и безумно дорого, во всяком случае для России. Попытка преодолеть кризис с помощью ядерных двигателей наткнулась на экологические проблемы. Появление детонационных ЖРД, быть может, и рано сравнивать с переходом авиации на реактивную тягу, но ускорить процесс освоения космоса они вполне способны. Тем более что у этого типа реактивных двигателей есть еще одно очень важное преимущество.
ГРЭС в миниатюре

Обычный ЖРД - это, в принципе, большая горелка. Для увеличения его тяги и удельных характеристик нужно поднимать давление в камере сгорания. При этом топливо, которое впрыскивается в камеру через форсунки, должно подаваться при большем давлении, чем реализуется в процессе сгорания, иначе струя топлива просто не сможет проникнуть в камеру. Поэтому самым сложным и дорогим агрегатом в ЖРД является вовсе не камера с соплом, которое у всех на виду, а топливный турбонасосный агрегат (ТНА), спрятанный в недрах ракеты среди хитросплетения трубопроводов.

К примеру, у самого мощного в мире ЖРД РД-170, созданного для первой ступени советской сверхтяжелой ракеты-носителя «Энергия» тем же НПО «Энергия», давление в камере сгорания составляет 250 атмосфер. Это очень много. Но давление на выходе из кислородного насоса, качающего окислитель в камеру сгорания, достигает величины 600 атм. Для привода этого насоса используется турбина мощностью 189 МВт! Только представьте себе это: колесо турбины диаметром 0,4 м развивает мощность, в четыре раза большую, чем атомный ледокол «Арктика» с двумя ядерными реакторами! При этом ТНА - это сложное механическое устройство, вал которого совершает 230 оборотов в секунду, а работать ему приходится в среде жидкого кислорода, где малейшая не искра даже, а песчинка в трубопроводе приводит к взрыву. Технологии создания такого ТНА и есть главное ноу-хау «Энергомаша», обладание которым позволяет российской компании и сегодня продавать свои двигатели для установки на американских ракетах-носителях Atlas V и Antares. Альтернативы российским двигателям в США пока нет.

Для детонационного двигателя такие сложности не нужны, поскольку давление для более эффективного сгорания обеспечивает сама детонация, которая и представляет собой бегущую в топливной смеси волну сжатия. При детонации давление увеличивается в 18–20 раз без всякого ТНА.

Чтобы получить в камере сгорания детонационного двигателя условия, эквивалентные, к примеру, условиям в камере сгорания ЖРД американского «Шаттла» (200 атм), достаточно подавать топливо под давлением... 10 атм. Агрегат, необходимый для этого, по сравнению с ТНА классического ЖРД - все равно что велосипедный насос рядом Саяно-Шушенской ГРЭС.

То есть детонационный двигатель будет не только мощнее и экономичнее обычного ЖРД, но и на порядок проще и дешевле. Так почему же эта простота в течение 70 лет не давалась в руки конструкторам?
Главная проблема, которая встала перед инженерами, - как совладать с детонационной волной. Дело ведь не только в том, чтобы сделать двигатель прочнее, чтобы он выдержал повышенные нагрузки. Детонация - это не просто взрывная волна, а кое-что похитрее. Взрывная волна распространяется со скоростью звука, а детонационная со сверхзвуковой скоростью - до 2500 м/с. Она не образует стабильного фронта пламени, поэтому работа такого двигателя носит пульсирующий характер: после каждой детонации необходимо обновить топливную смесь, после чего запустить в ней новую волну.

Попытки создать пульсирующий реактивный двигатель предпринимались задолго до идеи с детонацией. Именно в применении пульсирующих реактивных двигателей пытались найти альтернативу поршневым моторам в 1930-е годы. Привлекала опять же простота: в отличие от авиационной турбины для пульсирующего воздушно-реактивного двигателя (ПуВРД) не нужны были ни вращающийся со скоростью 40 000 оборотов в минуту компрессор для нагнетания воздуха в ненасытное чрево камеры сгорания, ни работающая при температуре газа свыше 1000˚С турбина. В ПуВРД давление в камере сгорания создавали пульсации в горении топлива.

Первые патенты на пульсирующий воздушно-реактивный двигатель были получены независимо друг от друга в 1865 году Шарлем де Луврье (Франция) и в 1867 году Николаем Афанасьевичем Телешовым (Россия). Первую работоспособную конструкцию ПуВРД запатентовал в 1906 году русский инженер В.В. Караводин, годом позже построивший модельную установку. Установка Караводина вследствие ряда недостатков не нашла применения на практике. Первым ПуВРД, работавшим на реальном летательном аппарате, стал немецкий Argus As 014, основанный на патенте 1931 года мюнхенского изобретателя Пауля Шмидта. Argus создавался для «оружия возмездия» - крылатой бомбы «Фау-1». Аналогичную разработку создал в 1942 году советский конструктор Владимир Челомей для первой советской крылатой ракеты 10Х.

Конечно, эти двигатели еще не были детонационными, поскольку в них использовались пульсации обычного горения. Частота этих пульсаций была невелика, что порождало характерный пулеметный звук при работе. Удельные характеристики ПуВРД из-за прерывистого режима работы в среднем были невысоки и после того, как конструкторы к концу 1940-х годов справились со сложностями создания компрессоров, насосов и турбин, турбореактивные двигатели и ЖРД стали королями неба, а ПуВРД остались на периферии технического прогресса.

Любопытно, что первые ПуВРД немецкие и советские конструкторы создали независимо друг от друга. Кстати, и идея детонационного двигателя в 1940 году пришла в голову не одному только Зельдовичу. Одновременно с ним те же мысли высказали Фон Нейман (США) и Вернер Деринг (Германия), так что в международной науке модель использования детонационного горения назвали ZND.

Идея объединить ПуВРД с детонационным горением была очень заманчивой. Но фронт обычного пламени распространяется со скоростью 60–100 м/с и частота его пульсаций в ПуВРД не превышает 250 в секунду. А детонационный фронт движется со скоростью 1500‒2500 м/с, таким образом частота пульсаций должна составлять тысячи в секунду. Реализовать такую скорость обновления смеси и инициации детонации на практике было затруднительно.

Тем не менее попытки создания работоспособных пульсирующих детонационных двигателей продолжались. Работа специалистов ВВС США в этом направлении увенчалась созданием двигателя-демонстратора, который 31 января 2008 года впервые поднялся в небо на экспериментальном самолете Long-EZ. В историческом полете двигатель проработал... 10 секунд на высоте 30 метров. Тем не менее приоритет в данном случае остался за Соединенными Штатами, а самолет по праву занял место в Национальном музее ВВС США.

Между тем уже давно была придумана другая, гораздо более перспективная схема

Как белка в колесе

Мысль закольцевать детонационную волну и заставить ее бегать в камере сгорания как белка в колесе родилась у ученых в начале 1960-х годов. Явление спиновой (вращающейся) детонации теоретически предсказал советский физик из Новосибирска Б. В. Войцеховский в 1960 году. Почти одновременно с ним, в 1961 году, ту же идею высказал американец Дж. Николлс из Мичиганского университета.

Ротационный, или спиновый, детонационный двигатель конструктивно представляет собой кольцевую камеру сгорания, топливо в которую подается с помощью радиально расположенных форсунок. Детонационная волна внутри камеры движется не в осевом направлении, как в ПуВРД, а по кругу, сжимая и выжигая топливную смесь перед собой и в конце концов выталкивая продукты сгорания из сопла точно так же, как винт мясорубки выталкивает наружу фарш. Вместо частоты пульсаций мы получаем частоту вращения детонационной волны, которая может достигать нескольких тысяч в секунду, то есть практически двигатель работает не как пульсирующий, а как обычный ЖРД со стационарным горением, но куда более эффективно, поскольку на самом деле в нем происходит детонация топливной смеси.

В СССР, как и в США, работы над ротационным детонационным двигателем шли с начала 1960-х годов, но опять же при кажущейся простоте идеи ее реализация потребовала решения головоломных теоретических вопросов. Как организовать процесс так, чтобы волна не затухала? Необходимо было понимание сложнейших физико-химических процессов, происходящих в газовой среде. Тут расчет велся уже не на молекулярном, а на атомарном уровне, на стыке химии и квантовой физики. Процессы эти более сложны, чем те, что происходят при генерации луча лазера. Именно поэтому лазер уже давно работает, а детонационный двигатель - нет. Для понимания этих процессов потребовалось создать новую фундаментальную науку - физико-химическую кинетику, которой 50 лет назад еще не существовало. А для практического расчета условий, при которых детонационная волна не будет затухать, а станет самоподдерживающейся, потребовались мощные ЭВМ, появившиеся лишь в последние годы. Вот какой фундамент необходимо было положить в основание практических успехов по укрощению детонации.

Активные работы в этом направлении ведутся в Соединенных Штатах. Этими исследованиями занимаются Pratt & Whitney, General Electric, NASA. К примеру, в научно-исследовательской лаборатории ВМФ США разрабатываются спиновые детонационные газотурбинные установки для флота. В ВМФ США используется 430 газотурбинных установок на 129 кораблях, в год они потребляют топлива на три миллиарда долларов. Внедрение более экономных детонационных газотурбинных двигателей (ГТД) позволит сберечь гигантские средства.

В России над детонационными двигателями работали и продолжают работать десятки НИИ и КБ. В их числе и НПО «Энергомаш» - ведущая двигателестроительная компания российской космической промышленности, со многим предприятиями которой сотрудничает банк ВТБ. Разработка детонационного ЖРД велась не один год, но для того чтобы вершина айсберга этой работы засверкала под солнцем в виде успешного испытания, потребовалось организационное и финансовое участие небезызвестного Фонда перспективных исследований (ФПИ). Именно ФПИ выделил необходимые средства для создания в 2014 году специализированной лаборатории «Детонационные ЖРД». Ведь несмотря на 70 лет исследований, эта технология до сих пор остается в России «слишком перспективной», чтобы ее финансировали заказчики вроде Министерства обороны, которым нужен, как правило, гарантированный практический результат. А до него еще очень далеко.

Укрощение строптивой

Хочется верить, что после всего сказанного выше становится понятна та титаническая работа, которая проглядывает между строк краткого сообщения об испытаниях, прошедших на «Энергомаше» в Химках в июле - августе 2016 года: «Впервые в мире был зарегистрирован установившийся режим непрерывной спиновой детонации поперечных детонационных волн частотой около 20 кГц (частота вращения волны - 8 тысяч оборотов в секунду) на топливной паре „кислород - керосин“. Удалось добиться получения нескольких детонационных волн, уравновешивавших вибрационные и ударные нагрузки друг друга. Специально разработанные в центре имени М. В. Келдыша теплозащитные покрытия помогли справиться с высокими температурными нагрузками. Двигатель выдержал несколько пусков в условиях экстремальных вибронагрузок и сверхвысоких температур при отсутствии охлаждения пристеночного слоя. Особую роль в этом успехе сыграло создание математических моделей и топливных форсунок, позволявших получать смесь необходимой для возникновения детонации консистенции».

Разумеется, не стоит преувеличивать значение достигнутого успеха. Создан лишь двигатель-демонстратор, который проработал относительно недолго, и о его реальных характеристиках ничего не сообщается. По информации НПО «Энергомаш», детонационный ЖРД позволит поднять тягу на 10% при сжигании того же количества топлива, что и в обычном двигателе, а удельный импульс тяги должен увеличиться на 10–15%.

Но главный результат состоит в том, что практически подтверждена возможность организации детонационного горения в ЖРД. Однако путь до использования этой технологии в составе реальных летательных аппаратов предстоит еще долгий. Другой важный аспект заключается в том, что еще один мировой приоритет в области высоких технологий отныне закреплен за нашей страной: впервые в мире полноразмерный детонационный ЖРД заработал именно в России, и этот факт останется в истории науки и техники. опубликовано

1

Рассмотрена проблема разработки ротационных детонационных двигателей. Представлены основные типы таких двигателей: ротационный детонационный двигатель Николса, двигатель Войцеховского. Рассмотрены основные направления и тенденции развития конструкции детонационных двигателей. Показано, что современные концепции ротационного детонационного двигателя не могут в принципе привести к созданию работоспособной конструкции, превосходящей по своим характеристикам существующие воздушно-реактивные двигатели. Причиной является стремление конструкторов объединить в один механизм генерацию волны, горение топлива и эжекцию топлива и окислителя. В результате самоорганизации ударно-волновых структур детонационное горение осуществляется в минимальном, а не максимальном объеме. Реально достигнутый сегодня результат – детонационное горение в объеме, не превышающем 15 % объема камеры сгорания. Выход видится в ином подходе – сначала создается оптимальная конфигурация ударных волн, а уже затем в эту систему подаются компоненты топлива и организуется оптимальное детонационное горение в большом объеме.

детонационный двигатель

ротационный детонационный двигатель

двигатель Войцеховского

круговая детонация

спиновая детонация

импульсный детонационный двигатель

1. Войцеховский Б.В., Митрофанов В.В., Топчиян М.Е., Структура фронта детонации в газах. – Новосибирск: Изд-во СО АН СССР, 1963.

2. Усков В.Н., Булат П.В. О задаче проектирования идеального диффузора для сжатия сверхзвукового потока // Фундаментальные исследования. – 2012. – № 6 (ч. 1). – С. 178–184.

3. Усков В.Н., Булат П.В., Продан Н.В. История изучения нерегулярного отражения скачка уплотнения от оси симметрии сверхзвуковой струи с образованием диска Маха // Фундаментальные исследования. – 2012. – № 9 (ч. 2). – С. 414–420.

4. Усков В.Н., Булат П.В., Продан Н.В. Обоснование применения модели стационарной Маховской конфигурации к расчету диска Маха в сверхзвуковой струе // Фундаментальные исследования. – 2012. – № 11 (ч. 1). – С. 168–175.

5. Щелкин К.И. Неустойчивость горения и детонации газов // Успехи физических наук. – 1965. – Т. 87, вып. 2.– С. 273–302.

6. Nichols J.A., Wilkmson H.R., Morrison R.B. Intermittent Detonation as a Trust-Producing Mechanism // Jet Propulsion. – 1957. – № 21. – P. 534–541.

Ротационные детонационные двигатели

Все виды ротационных детонационных двигателей (RDE) роднит то, что система подачи топлива объединена с системой сжигания топлива в детонационной волне, но дальше все работает, как в обычном реактивом двигателе - жаровая труба и сопло. Именно этот факт и инициировал такую активность на ниве модернизации газотурбинных двигателей (ГТД). Представляется привлекательным заменить в ГТД только смесительную головку и систему розжига смеси. Для этого нужно обеспечить непрерывность детонационного горения, например, запустив волну детонации по кругу. Одним из первых такую схему предложил Николс в 1957 г. , а затем развил ее и в середине 60-х годов провел серию экспериментов с вращающейся детонационной волной (рис. 1).

Регулируя диаметр камеры и толщину кольцевого зазора, для каждого вида топливной смеси можно подобрать такую геометрию, что детонация будет устойчивой. На практике соотношения величины зазора и диаметра двигателя получаются неприемлемыми и регулировать скорость распространения волны приходится, управляя подачей топлива, о чем сказано ниже.

Так же как и в импульсных детонационных двигателях, круговая детонационная волна способна эжектировать окислитель, что позволяет использовать RDE при нулевых скоростях. Этот факт повлек за собой шквал экспериментальных и расчетных исследований RDE c кольцевой камерой сгорания и самопроизвольной эжекцией топливно-воздушной смеси, перечислять здесь которые не имеет никакого смысла. Все они построены примерно по одной схеме (рис. 2), напоминающей схему двигателя Николса (рис. 1).

Рис. 1. Схема организации непрерывной круговой детонации в кольцевом зазоре: 1 - детонационная волна; 2 - слой «свежей» топливной смеси; 3 - контактный разрыв; 4 - распространяющийся вниз по течению косой скачок уплотнения; D - направление движения детонационной волны

Рис. 2. Типичная схема RDE: V - скорость набегающего потока; V4 - скорость потока на выходе из сопла; а - свежая ТВС, b - фронт детонационной волны; c - присоединенный косой скачок уплотнения; d - продукты сгорания; p(r) - распределение давления на стенке канала

Разумной альтернативой схеме Николса могла бы стать установка множества топливно-окислительных форсунок, которые бы вспрыскивали топливно-воздушную сместь в область непосредственно перед детонационной волной по определенному закону с заданным давлением (рис. 3). Регулируя давление и скорость подачи топлива в область горения за детонационной волной, можно влиять на скорость ее распространения вверх по потоку. Данное направление является перспективным, но основная проблема в проектировании подобных RDE заключается в том, что повсеместно используемая упрощенная модель течения во фронте детонационного горения совершенно не соответствует реальности.

Рис. 3. RDE с регулируемой подачей топлива в область горения. Ротационный двигатель Войцеховского

Основные надежды в мире связываются с детонационными двигателями, работающими по схеме ротационного двигателя Войцеховского. В 1963 г. Б.В. Войцеховский по аналогии со спиновой детонацией разработал схему непрерывного сжигания газа за тройной конфигурацией ударных волн, циркулирующих в кольцевом канале (рис. 4).

Рис. 4. Схема Войцеховского непрерывного сжигания газа за тройной конфигурацией ударных волн, циркулирующих в кольцевом канале: 1 - свежая смесь; 2 - дважды сжатая смесь за тройной конфигурацией ударных волн, область детонации

В данном случае стационарный гидродинамический процесс с горением газа за ударной волной отличается от схемы детонации Чепмена-Жуге и Зельдовича-Неймана. Такой процесс вполне устойчив, его длительность определяется запасом топливной смеси и в известных экспериментах составляет несколько десятков секунд.

Схема детонационного двигателя Войцеховского послужила прототипом многочисленных исследований ротационных и спиновых детонационных двигателей, инициированных в последние 5 лет. На эту схему приходится более 85 % всех исследований. Всем им присущ один органический недостаток - зона детонации занимает слишком маленькую часть общей зоны горения, обычно не более 15 %. В результате удельные показатели двигателей получаются хуже, чем у двигателей традиционной конструкции.

О причинах неудач с реализацией схемы Войцеховского

Большинство работ по двигателям с непрерывной детонацией связано с развитием концепции Войцеховского. Несмотря на более чем 40-летнюю историю исследований, результаты фактически остались на уровне 1964 г. Доля детонационного горения не превышает 15 % от объема камеры сгорания. Остальное - медленное горение в условиях, далеких от оптимальных.

Одной из причин такого положения дел является отсутствие работоспособной методики расчета. Поскольку течение является трехмерным, а при расчете учитываются только законы сохранения количества движения на ударной волне в перпендикулярном к модельному фронту детонации направлении, то результаты расчета наклона ударных волн к потоку продуктов сгорания отличаются от экспериментально наблюдаемых более чем на 30 %. Следствием является то, что, несмотря на многолетние исследования различных систем подачи топлива и эксперименты по изменению соотношения компонентов топлива, все, что удалось сделать, - это создать модели, в которых детонационное горение возникает и поддерживается в течение 10-15 с. Ни об увеличении КПД, ни о преимуществах по сравнению с существующими ЖРД и ГТД речи не идет.

Проведенный авторами проекта анализ имеющихся схем RDE показал, что все предлагающиеся сегодня схемы RDE неработоспособны в принципе. Детонационное горение возникает и успешно поддерживается, но только в ограниченном объеме. В остальном объеме мы имеем дело с обычным медленным горением, причем за неоптимальной системой ударных волн, что приводит к значительным потерям полного давления. Кроме того, давление оказывается также ниже в разы, чем необходимо для идеальных условий горения при стехиометрическом соотношении компонентов топливной смеси. В результате удельный расход топлива на единицу тяги оказывается на 30-40 % выше, чем у двигателей традиционных схем.

Но самой главной проблемой является сам принцип организации непрерывной детонации. Как показали исследования непрерывной круговой детонации, выполненные еще в 60-е годы , , фронт детонационного горения представляет собой сложную ударно-волновую структуру, состоящую как минимум из двух тройных конфигураций (о тройных конфигурациях ударных волн . Такая структура с присоединенной зоной детонации, как и любая термодинамическая система с обратной связью, оставленная в покое, стремится занять положение, соответствующее минимальному уровню энергии. В результате тройные конфигурации и область детонационного горения подстраиваются друг под друга так, чтобы фронт детонации перемещался по кольцевому зазору при минимально возможном для этого объеме детонационного горения. Это прямо противоположно той цели, которую ставят перед детонационным горением конструкторы двигателей.

Для создания эффективного двигателя RDE необходимо решить задачу создания оптимальной тройной конфигурации ударных волн и организации в ней зоны детонационного сжигания. Оптимальные ударно-волновые структуры необходимо уметь создавать в самых разных технических устройствах, например, в оптимальных диффузорах сверхзвуковых воздухозаборников . Основная задача - максимально возможное увеличение доли детонационного горения в объеме камеры сгорания с неприемлемых сегодняшних 15 % до хотя бы 85 %. Существующие проекты двигателей, основанные на схемах Николса и Войцеховского, не могут обеспечить выполнения данной задачи.

Рецензенты:

Усков В.Н., д.т.н., профессор кафедры гидроаэромеханики Санкт-Петербургского государственного университета, математико-механический факультет, г. Санкт-Петербург;

Емельянов В.Н., д.т.н., профессор, заведующий кафедрой плазмогазодинамики и теплотехники, БГТУ «ВОЕНМЕХ» им. Д.Ф. Устинова, г. Санкт-Петербург.

Работа поступила в редакцию 14.10.2013.

Библиографическая ссылка

Булат П.В., Продан Н.В. ОБЗОР ПРОЕКТОВ ДЕТОНАЦИОННЫХ ДВИГАТЕЛЕЙ. РОТАЦИОННЫЕ ДЕТОНАЦИОННЫЕ ДВИГАТЕЛИ // Фундаментальные исследования. – 2013. – № 10-8. – С. 1672-1675;
URL: http://fundamental-research.ru/ru/article/view?id=32642 (дата обращения: 29.07.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Детонационный двигатель более простой и дешевле в изготовлении, на порядок мощнее и экономичнее обычного реактивного двигателя, по сравнению с ним обладает более высоким КПД.

Описание:

Детонационный двигатель (импульсный, пульсирующий двигатель) идет на смену обычного реактивного двигателя . Чтобы понять сущность детонационного двигателя надо разобрать обычный реактивный двигатель .

Обычный реактивный двигатель устроен следующим образом.

В камере сгорания происходит сгорание топлива и окислителя, в качестве которого выступает кислород из воздуха. При этом давление в камере сгорания постоянно. Процесс горения резко повышает температуру, создает неизменный пламенный фронт и постоянную реактивную тягу, истекающую из сопла. Фронт обычного пламени распространяется в газовой среде со скоростью 60-100 м/сек. За счет этого и происходит движение летательного аппарата . Однако современные реактивные двигатели достигли определенного предела КПД, мощности и других характеристик, повышение которых практически невозможно либо крайне затруднительно.

В детонационном (импульсном или пульсирующем) двигателе горение происходит путем детонации. Детонация - это процесс горения, но которое происходит в сотни раз быстрее, чем при обычном сжигании топлива. При детонационном горении образуется детонационная ударная волна, несущая со сверхзвуковой скоростью. Она составляет порядка 2500 м/сек. Давление в результате детонационного горения стремительно возрастает, а объем камеры сгорания остается неизменным. Продукты горения вырываются с огромной скоростью через сопло. Частота пульсаций детонационной волны достигает несколько тысяч в секунду. В детонационной волне нет стабилизации фронта пламени, на каждую пульсацию обновляется топливная смесь и волна запускается вновь.

Давление в детонационном двигателе создается за счет самой детонации, что исключает подачу топливной смеси и окислителя при высоком давлении. В обычном реактивном двигателе, чтобы создать давление тяги в 200 атм., необходимо подавать топливную смесь под давлением в 500 атм. В то время как в детонационном двигателя – давление подачи топливной смеси – 10 атм.

Камера сгорания детонационного двигателя конструктивно имеет кольцевую форму с форсунками, размещёнными по её радиусу для подачи топлива . Волна детонации пробегает по окружности вновь и вновь, топливная смесь сжимается и выгорает, выталкивая продукты сгорания через сопло.

Преимущества:

– детонационный двигатель более простой в изготовлении. Отсутствует необходимость в использовании турбонасосных агрегатов,

на порядок мощнее и экономичнее обычного реактивного двигателя,

– имеет более высокий КПД,

дешевле в изготовлении,

– нет необходимости создавать высокое давление подачи топливной смеси и окислителя, высокое давление создается за счет самой детонации,

детонационный двигатель превосходит обычный реактивный двигатель в 10 раз по мощности, снимаемой с единицы объема, что приводит к уменьшению конструкции детонационного двигателя,

– детонационное горение в 100 раз быстрее, чем обычное горение топлива.

Примечание: © Фото https://www.pexels.com, https://pixabay.com

Детонационный двигатель часто рассматривают как альтернативу стандартному двигателю внутреннего сгорания или ракетному. Он оброс множеством мифов и легенд. Рождаются и живут эти легенды только по тому, что распространяющие их люди или забыли школьный курс физики, или вообще прогуляли его полностью!

Рост удельной мощности или тяги

Заблуждение первое.

Из роста скорости сгорания топлива вплоть до 100 раз, можно будет поднять удельную (в расчете на единице рабочего объема) мощность двигателя внутреннего сгорания. Для работающих на детонационных режимах ракетных двигателей в 100 раз вырастит тяга на единицу массы.

Примечание: Как всегда, не понятно о какой массе идет речь — о массе рабочего тела или всей ракеты в целом.

Связи между тем с какой скоростью горит топливо и удельной мощностью нет вообще никакой.

Есть связь между степенью сжатия и удельной мощностью. Для бензиновых двигателей внутреннего сгорания степень сжатия около 10. В двигателях, использующих детонационный режим, ее можно увечить приблизительно в 2 раза, что как раз реализуется в дизельных двигателях, которые имеют степень сжатия уже около 20. Собственно работают в режиме детонации. То есть, конечно, степень сжатия повысить можно, но после того как произошла детонация, это никому не нужно! Ни о каких 100 раз не может быть и речи!! Более того, рабочий объем ДВС, скажем, 2л, объем всего двигателя литров 100 или 200. Экономия по объему составит 1%!!! А вот дополнительный «расход»(толщина стенок, новые материалы и тд) будет мериться не в процентах, а в разах или десятках раз!!

Для справки. Произведенная работа пропорционально, грубо говоря, V*P (у адиабатического процесса присутствуют коэффициенты, но сути сейчас не меняет). Если объем уменьшить в 100 раз, значит начальное давление должна вырасти в те же 100 раз! (чтобы произвести такую же работу).

Литровую мощность можно поднять если вообще отказаться от сжатия или оставить его на том же уровне, но подавать углеводороды (в большем количестве) и чистый кислород в весовом соотношении около 1:2,6-4, в зависимости от состава углеводородов, или вообще жидкий кислород (где уже это было:-)). Тогда можно и литровую мощность повысить, и КПД (за счет роста «степени расширения» которая может достигать 6000!). Но на пути стоит как способность камеры сгорания выдержать такие давления и температуры, так и необходимость «питаться» не атмосферным кислородом, а запасенным чистым или вообще жидким кислородом!

Собственно некое подобие этого — использование закиси азота. Закись азота — это просто способ поставить повышенное количество кислорода в камеру сгорания.

Но никакого отношения к детонации эти способы не имеют!!

Можно предложить дальнейшее развитие таких экзотических способов повышения литровой мощности — использовать вместо кислорода фтора. Это более сильный окислитель, т.е. реакции с ним идут с большим выделением энергии.

Увеличение скорости истечения реактивной струи

Залужение второе.
В двигателях ракет, использующих детонационные режимы работы, в результате того, что режим сгорания происходит на скоростях выше скорости звука в данной среде (которая зависит от температуры и давления), в камере сгорания параметры давления и температуры увеличиваются в несколько раз, повышается скорость выходящей реактивной струи. Это пропорционально улучшает все параметры подобного двигателя, в том числе, снижает его массу и расход, а значит и необходимый запас топлива.

Как уже отмечалось выше нельзя повысить степень сжатия более чем в 2 раза. Но опять-таки скорость истечения газов зависит от подведенной энергии и их температуры! (Закон сохранения энергии). При том же количестве энергии (том же количестве топлива) повысить скорость можно только понизив их температуру. Но этому уже препятствуют законы термодинамики.

Детонационные ракетные двигатели — будущее межпланетных полетов

Заблуждение третье.

Только ракетные двигатели на детонационных технологиях позволяют получить скоростные параметры требуемые для межпланетных перелетов на основе химической реакции окисления.

Ну это заблуждение хотя бы логически последовательное. Вытекает из первых двух.

Никакие технологии не способны ничего уже выжать из реакции окисления! По крайней мере для известных веществ. Скорость истечения определяется энергетическим балансом реакции. Часть этой энергии, согласно законам термодинамики, можно перевести в работу (кинетическую энергию). Т.е. даже если вся энергия перейдет в кинетическую, то это предел на основе закона сохранения энергии и никакими детонациями, степенями сжатия и тд его нельзя преодолеть.

Кроме энергетического баланса очень важный параметр — «энергия на нуклон». Если сделать небольшие расчеты, то можно получить что реакция окисления атома углерода(C) дает в 1,5 раза больше энергии чем реакция окисления молекулы водорода (H2). Но из-за того что продукт окисления углерода (СО2) в 2,5 раза тяжелее продукта окисления водорода (Н2О), скорость истечения газов из водородных двигателей на 13%. Правда, надо еще учитывать теплоемкость продуктов горения, но это дает совсем небольшую поправку.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png